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Abstract. A spin-1 model, appropriated to study the competition between bilinear (JijSiSj) and bi-
quadratic (KijS

2
i S

2
j ) random interactions, both of them with zero mean, is investigated. The interactions

are infinite-ranged and the replica method is employed. Within the replica-symmetric assumption, the
system presents two phases, namely, paramagnetic and spin-glass, separated by a continuous transition
line. The stability analysis of the replica-symmetric solution yields, besides the usual instability associated
with the spin-glass ordering, a new phase due to the random biquadratic couplings between the spins.

PACS. 05.70.-a Thermodynamics – 05.70.Fh Phase transitions: general studies – 64.60.-i General studies
of phase transitions

1 Introduction

The study of disordered systems has grown very fast dur-
ing the last years. Among these systems, spin glasses [1–3]
have attracted much attention. One of its main char-
acteristic is the existence of a very rugged free-energy
landscape, with many minima separated by high bar-
riers. It turns out that the equilibrium state of such
system becomes hardly accessible in an experiment,
as one may guess. The spin-glass mean-field theory is
well-established [2,3], being highly nontrivial. However,
the effects of fluctuations around the mean-field solution
are very difficult to take into account in general cases,
with most of the results been obtained for the Edwards-
Anderson model [4].

Many other spin-glass models have been investigated
within the mean-field level (for reviews, see Refs. [1–3]).
Recently, much effort has been dedicated to understanding
the phase behavior of spin-1 Ising glasses [5–9], as promis-
ing models to describe real systems which present multi-
critical phenomena. Other models which can be mapped
onto spin-1 Ising glasses were also studied recently [10–17].
However, as far as we know, none of those works addresses
to the competition between bilinear and biquadratic ran-
dom interactions. In fact, a few years ago a spin-glass
version of the Blume-Emery-Griffiths model [18] was in-
troduced in order to describe disordered magnetic lattice
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gases [19–23], including both bilinear and biquadratic ran-
dom couplings; however, due to the fact that a replica
stability analysis was not performed, an important ingre-
dient was missing, i.e., broken ergodicity, usually associ-
ated with irreversibility effects. The purpose of the present
work is to fill this gap by investigating the overall behavior
of a system which presents the aforementioned random in-
teractions in a simple spin-1 model. In order to determine
the free-energy density and the corresponding equations of
state, we will use the replica mean-field approach. Under
the replica-symmetry assumption [24], the system exhibits
only two phases separated by a continuous transition line.
However, the stability analysis of the replica-symmetric
solution performed within the approach proposed by de
Almeida and Thouless [25] suggests the existence of three
distinct phases. The paper is organized as follows. In
Section 2 we describe the model and obtain the replica
free energy. The replica-symmetric solution, as well as the
corresponding phase diagram is investigated in Section 3.
The stability analysis of the replica-symmetric solution is
performed in Section 4. Our findings are summarized in
Section 5, where we also present our conclusions.

2 The model and its free-energy density

In this paper we consider an infinite-range interaction
spin-glass model described by the Hamiltonian

H = −
∑
(i,j)

JijSiSj −
∑
(i,j)

KijS
2
i S

2
j , (1)
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where each spin Si (i = 1, 2, · · · , N) can take the values
−1, 0 and 1 and the summations are over all distinct pairs
(i, j). Both couplings are quenched, independent random
variables, following probability distributions

P (Xij) =
(

N

2πX2

)1/2

exp

(
−
NX2

ij

2X2

)
, (2)

where X stands for either J or K. There are two obvious
limiting cases of this model. First, in the absence of bi-
quadratic interactions (Kij = 0 for every pair (i, j)), we
have a conventional spin-1 spin-glass model. The prop-
erties of this model are quite analogous to those of the
Sherrington-Kirkpatrick model [5–9,26–28]; the system
presents a continuous transition from a paramagnetic to a
low-temperature spin-glass phase where the ergodicity is
also broken [27]. On the other hand, if Jij = 0 for every
pair (i, j), the system becomes equivalent to the discrete
quadrupolar-glass model investigated in reference [10]. In
this case, there is no sharp transition to a low-temperature
phase; however, a stability analysis shows that in fact
there is a phase transition to a low-temperature noner-
godic region [11]. We will be most interested in the case
where both Jij and Kij are distinct from zero, in order
to appreciate the effects of their competition on the phase
diagram.

The free-energy density for this system is given by

βf = − lim
N→∞

lnZ
N

, (3)

where the bar denotes an average over the disorder. Such
an average is performed by the so-called replica method,
through the identity

lnZ = lim
n→0

Zn − 1
n

, (4)

which avoids the difficulty of averaging the logarithm. Us-
ing standard procedures [2,3], we obtain

βf = lim
n→0

1
n

min gn(qαβ , Qαβ, pα), (5)

where

gn(qαβ , Qαβ , pα)=
1
4

∑
α6=β

(
β2J2q2

αβ + β2K2Q2
αβ

)
+
β2

4
(J2+K2)

∑
α

p2
α−ln Tr exp(Heff)

(6)

and

Heff =
β2J2

2

∑
α6=β

qαβS
αSβ +

β2K2

2

∑
α6=β

Qαβ (Sα)2 (
Sβ
)2

+
β2

2
(
J2+K2

)∑
α

p2
α (Sα)2

, (7)

with the indexes α and β running from 1 to n. Stationarity
of gn with respect to qαβ , Qαβ and pα gives the equations
of state,

pα =
〈

(Sα)2
〉
n
,

qαβ =
〈
SαSβ

〉
n
, (8)

Qαβ =
〈
(SαSβ)2

〉
n
,

where 〈 〉n denotes an average with respect to the “ef-
fective Hamiltonian” in equation (7). Whereas the order
parameters qαβ and Qαβ are already expected, the free
energy depends also on pα, a disorder induced order pa-
rameter which measures the fraction of spins in the states
Sα = ±1, for each replica α.

In the following two sections we consider the replica-
symmetric solution and its corresponding stability analy-
sis.

3 Replica-symmetric solution

The simplest solution of the saddle-point equations is the
replica symmetric ansatz, which consists in assuming

pα = p, ∀α

qαβ = q, ∀(αβ) (9)

Qαβ = Q, ∀(αβ).

Inserting this ansatz into equations (5–7) and perform-
ing some simple Gaussian transformations, the free-energy
density becomes

f=
βJ2

4
(
p2−q2

)
+
βK2

4
(
p2−Q2

)
−〈〈ln z(x, y)〉〉xy (10)

where

z(x, y) = 1 + 2 exp(∆) cosh (βJ
√
qx) , (11)

∆ =
β2J2

2
(p− q) +

β2K2

2
(p−Q) + βK

√
Qy,

(12)

and

〈〈h(x, y)〉〉xy =
∫ +∞

−∞

dx√
2π

×
∫ +∞

−∞

dy√
2π

exp
(
−x

2 + y2

2

)
h(x, y).

(13)

For the equations of state one gets,

p = 〈〈ϕ2(x, y)〉〉xy , (14)

q =
〈〈
ϕ2

1(x, y)
〉〉
xy
, (15)

Q =
〈〈
ϕ2

2(x, y)
〉〉
xy
, (16)
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Fig. 1. Phase diagram obtained within the replica-symmetric
solution, presenting a continuous transition from a high-
temperature paramagnetic phase (P) to a low-temperature
spin-glass phase (SG).

with

ϕ1(x, y) =
2e∆

z(x, y)
sinh(βJ

√
qx), (17)

ϕ2(x, y) =
2e∆

z(x, y)
cosh(βJ

√
qx). (18)

As mentioned before, the K = 0 case is equivalent to
D = 0 in the model studied by Ghatak and Sherring-
ton [26]. In this particular case it is well-known that we
have a continuous transition from a paramagnetic to a
spin-glass phase at kBT/J = 0.7901 · · · . In general, the
above equations present a trivial solution q = 0 but with
p 6= 0, Q 6= 0 for any temperature. In the low-temperature
regime we also find another phase, with all order param-
eters distinct from zero. The phase boundary separating
these two phases can be easily obtained from an expan-
sion in powers of q, in either the free-energy density, or
the equation of state for q. In either way, we find a critical
frontier given by

Q = (kBT/J)2. (19)

From the same expansions, we also ruled out the
possibility of first-order transitions and tricritical be-
havior. The condition given by the above equation in-
volves both order parameters Q and p, which should
satisfy equations (14, 16) with q set to zero. We are
thus left with a set of three coupled nonlinear equa-
tions, which, except for some particular limits, has no
analytical solution. We performed a detailed numeri-
cal study of these equations in order to check for the
possibility of other types of orderings, but we found
none, besides those already described. As a result of
our analysis, we found the critical frontier shown in
Figure 1. We performed an expansion forK � J , and veri-
fied that asymptotically, such a critical frontier approaches
the limit kBT/J = 0.7876 · · · , with p ∼= Q = 0.6204 · · · .
It is important to mention that within the present analy-
sis, the high-temperature phase should be identified as an
extension of the paramagnetic one already present when
K = 0. This can be justified by the following argument:
the free-energy density, as well as the order parameters p
and Q, may be expanded as power series of K, for small
values of K. Therefore, no anomalous behavior on the
thermodynamical functions can be seen as we let K → 0.
Similarly, the low-temperature phase should be identified
with the spin-glass phase occurring at K = 0. Thus, as
far as the replica symmetric solution is concerned, the bi-
quadratic random coupling does not bring any new physics
to this system.

In the following section we will consider the stability
of the above-mentioned solutions against replica fluctua-
tions, and it will be shown that this study leads to an
important modification on the paramagnetic side.

4 Stability of the replica-symmetric solutions

Since the work of de Almeida and Thouless [25], it is gen-
erally believed that replica-symmetric solutions are unsta-
ble under small fluctuations on the whole replica space. In
our case, these fluctuations are governed by the Hessian
matrix,

G =



∂2gn
∂pα∂pβ

∂2gn
∂pα∂qνγ

∂2gn
∂pα∂Qνγ

∂2gn
∂qνγ∂pα

∂2gn
∂qαβ∂qνγ

∂2gn
∂qαβ∂Qνγ

∂2gn
∂Qνγ∂pα

∂2gn
∂Qνγ∂qαβ

∂2gn
∂Qαβ∂Qνγ


(20)

where gn is given by equation (6). Stability requires that
all eigenvalues of this matrix, evaluated within the replica-
symmetric solution, should be positive (see Appendix A
for the computation of such eigenvalues). In the limit
n→ 0 we get three longitudinal eigenvalues, as the roots
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A− B − λ(L) D − C F − E

2(C − D) G − 4H+ 3I − λ(L) J − 4K + 3L

2(F − E) J − 4K+ 3L M− 4N + 3O − λ(L)

���������

= 0 , (21)

λ(T) =
G − 2H+ I +M− 2N +O ±

p
[G − 2H+ I −M+ 2N −O]2 − 4[J − 2K + L]2

2
(22)

λ
(L)
2,3 =

A− B +M− 4N + 3O ±
p

[A− B −M+ 4N − 3O]2 − 8(E − F)2

2
· (24)

of the secular equation

see equation (21) above

and two transverse ones, given by

see equation (22) above

where the quantities A, . . .,O are defined in Appendix A.
In the paramagnetic phase, where q = 0, one of the longi-
tudinal eigenvalues becomes

λ
(L)
1 =

(
J

kBT

)2

−
(

J

kBT

)4

Q , (23)

whereas the other two are given by

see equation (24) above.

Let us first consider the behavior of the above eigenvalues
throughout the paramagnetic phase. Using both analytical
and numerical calculations, we find that all three longitu-
dinal eigenvalues are positive, with λ

(L)
1 vanishing along

the paramagnetic to spin-glass transition line. However,
considering the transverse eigenvalues of equation (22), we
notice that one of them, denoted by λ

(T)
1 (corresponding

to the plus sign before the square root), becomes identical
to λ

(L)
1 everywhere in the paramagnetic phase, including

the critical frontier paramagnetic/spin-glass, where it also
vanishes. Besides, in the paramagnetic region the second
transverse eigenvalue is given by

λ
(T)
2 =M− 2N +O . (25)

Our numerical analysis shows that as the temperature de-
creases, and for high enough values of K, λ(T)

2 becomes
negative, throughout the paramagnetic phase. This sug-
gests an onset of irreversibility in the paramagnetic phase,
associated with an ergodicity breaking, as we cross the line
given by λ(T)

2 = 0. This effect is brought about by fluctua-
tions on the order parameter Qαβ , which in turn was gen-
erated by the random biquadratic couplings. We identify
this region as a new phase, which we will call biquadratic

spin-glass phase, with replica-symmetry breaking associ-
ated to the parameter Qαβ ; this region should, then, be
properly described by the ansatz of Parisi [29]. We have
also found that the boundary paramagnetic/biquadratic
spin-glass (where λ(T)

2 = 0) is a straight line with slope
≈ 0.077; such a numerical result is in full agreement with
the one found in reference [11] (kBT/J

′ ≈ 1.38), if one
considers the proper changes of spin variables and sum-
mations in the Hamiltonian of reference [11] (which leads
to K = 18J ′).

We have also investigated numerically the behavior of
all five eigenvalues in the spin-glass phase. The transverse
eigenvalue λ(T)

1 is negative through the whole spin-glass
phase; this means that irreversibility is also present in this
phase and so, a solution with replica-symmetry breaking
should be employed.

The phase diagram resulting from this analysis is
shown in Figure 2. The paramagnetic to spin-glass
as well as the paramagnetic to biquadratic spin-glass
phase boundaries should remain valid under a Parisi-like
treatment. However, it is possible that the biquadratic
spin-glass to spin-glass frontier changes under replica-
symmetry breaking in both matrices Q and q. Thus, the
corresponding boundary shown in Figure 2, which was ob-
tained within the replica-symmetric solution, should be
seen as a rather schematic one, although there is no phys-
ical reason to expect a substantial qualitative change. The
correct treatment based on Parisi’s ansatz is very difficult
in this case, since it involves nonlinear integro-differential
equations at finite temperatures, which are hard to solve
numerically. Such an analysis is beyond the purpose of this
paper.

5 Conclusions

We have studied a solvable spin-1 model, including both
bilinear and biquadratic random exchanges, with zero
means and variances J and K, respectively. The model
was solved through the replica formalism. Three types
of order parameters were introduced to describe the sys-
tem in the replica space: a density (pα), which measures
the fraction of spins in the states Sα = ±1 and two
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Fig. 2. Phase diagram resulting from the stability analysis of
the replica-symmetric solution. This solution is stable through-
out the paramagnetic (P) phase only. The biquadratic spin-
glass phase (BSG), which occurs for large values of K, is char-
acterized by an instability of the replica-symmetric paramag-
netic solution. In the whole spin-glass phase (SG) the replica-
symmetric solution is unstable.

spin-glass-like matrices, represented by the bilinear and
biquadratic matrix elements qαβ and Qαβ , respectively.

The replica-symmetric solution leads to a continuous
transition from a high-temperature paramagnetic phase
to a low-temperature spin-glass phase, signaled by the on-
set of the spin-glass order parameter q. The correspond-
ing critical frontier is almost temperature-independent,
especially for large values of the variance K. We have
also analysed the eigenvalues of the stability matrix as-
sociated with fluctuations around the replica-symmetric
solutions. We verified numerically that one of the repli-
con eigenvalues is always negative throughout the whole
spin-glass phase, implying an instability of the replica-
symmetric solution. We have also noticed that the para-
magnetic phase presents a similar instability (associated
with the matrix elements Qαβ), for sufficiently large val-
ues of the variance K, giving rise to a new phase which we
have called biquadratic spin-glass phase. Such instabilities
may be related to the onset of irreversibility effects, i.e.,
the response functions could depend on the history of the
system (e.g., field-cooling and zero-field-cooling measure-

ments may lead to different results) [2,3]. On the basis
of our findings, many of them from numerical analysis,
we conclude that for K 6= 0 the system presents at least
three distinct phases, in which two of them should be prop-
erly described through a replica-symmetry breaking pro-
cedure. The frontier separating the biquadratic spin-glass
and spin-glass phases requires further investigation. It is
not clear if a full Parisi solution would change substan-
tially its location. We hope to address to this point in a
future work.
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Appendix A: Stability analysis
of the replica-symmetric solution

The elements of the Hessian matrix G, defined in equa-
tion (20), are given by

∂2gn
∂pα∂pβ

=
1
2

(βκ)2δαβ −
1
4

(βκ)4
[〈

(SαSβ)2
〉
n

−
〈
(Sα)2

〉
n

〈
(Sβ)2

〉
n

]
, (A.1)

∂2gn
∂pα∂qβγ

= −1
2

(βκ)2(βJ)2
[〈

(Sα)2SβSγ
〉
n

−
〈
(Sα)2

〉
n

〈
SβSγ

〉
n

]
, (A.2)

∂2gn
∂pα∂Qβγ

= −1
2

(βκ)2(βK)2
[〈

(SαSβSγ)2
〉
n

−
〈
(Sα)2

〉
n

〈
(SβSγ)2

〉
n

]
, (A.3)

∂2gn
∂qαβ∂qγδ

= (βJ)2δαβ − (βJ)4
(〈
SαSβSγSδ

〉
n

−
〈
SαSβ

〉
n

〈
SγSδ

〉
n

)
, (A.4)

∂2gn
∂qαβ∂Qγδ

= −(βJ)2(βK)2
[〈
SαSβ(SγSδ)2

〉
n

−
〈
SαSβ

〉
n

〈
(SγSδ)2

〉
n

]
, (A.5)

∂2gn
∂Qαβ∂Qγδ

= (βK)2δαβ − (βK)4
[〈

(SαSβSγSδ)2
〉
n

−
〈
(SαSβ)2

〉
n

〈
(SγSδ)2

〉
n

]
, (A.6)

where

κ2 = J2 +K2. (A.7)

For the replica-symmetric solution the eigenvectors of G
have the form

u =

 εα
ηαβ
ξαβ

 , (A.8)



666 The European Physical Journal B

where

εα = pα − p, ηαβ = qαβ − q, ξαβ = Qαβ −Q, (A.9)

represent Gaussian fluctuations. Following de Almeida
and Thouless [25], we start with the eigenvector totally
symmetric under replica-index permutations

εα = a, ηαβ = b, ξαβ = c, for α, β = 1 . . . n,
(A.10)

which correspond to the longitudinal eigenvectors, accord-
ing to the conventional classification [30]. For a finite value
of n, the corresponding eigenvalues follow from

λ(L)a = Aa+ (n− 1)Ba+ (n− 1)Cb

+
1
2

(n− 2)(n− 1)Db+ (n− 1)Ec

+
1
2

(n− 2)(n− 1)Fc, (A.11)

λ(L)b = 2Ca+ (n− 2)Da+ Gb+ 2(n− 2)Hb

+
(n− 2)(n− 3)

2
Ib+ J c+ 2(n− 2)Kc

+
(n− 2)(n− 3)

2
Lc, (A.12)

λ(L)c = 2Ea+ (n− 2)Fa+ J b+ 2(n− 2)Kb

+
(n− 2)(n− 3)

2
Lb+Mc+ 2(n− 2)N c

+
(n− 2)(n− 3)

2
Oc, (A.13)

where

A =
∂2gn
∂pα∂pα

∣∣∣∣
RS

=
(βκ)2

2

[
1− (βκ)2

2
(1− p)p

]
, (A.14)

B =
∂2gn
∂pα∂pβ

∣∣∣∣
RS

=
(βκ)4

4
(
p2 −Q

)
, (A.15)

C =
∂2gn

∂pα∂qαβ

∣∣∣∣
RS

=
(βJ)2(βκ)2

2
(p− 1)q, (A.16)

D =
∂2gn

∂pα∂qβγ

∣∣∣∣
RS

=
(βJ)2(βκ)2

2
(pq − w), (A.17)

E =
∂2gn

∂pα∂Qαβ

∣∣∣∣
RS

=
(βκ)2(βK)2

2
(p− 1)Q, (A.18)

F =
∂2gn

∂pα∂Qβγ

∣∣∣∣
RS

=
(βκ)2(βK)2

2
(pQ−W ), (A.19)

G =
∂2gn

∂qαβ∂qαβ

∣∣∣∣
RS

= (βJ)2
[
1 + (βJ)2(q2 −Q)

]
,

(A.20)

H =
∂2gn

∂qαβ∂qαγ

∣∣∣∣
RS

= (βJ)4(q2 − w), (A.21)

I =
∂2gn

∂qαβ∂qγδ

∣∣∣∣
RS

= (βJ)4(q2 − s), (A.22)

J =
∂2gn

∂qαβ∂Qαβ

∣∣∣∣
RS

= (βJ)2(βK)2(Q− 1)q, (A.23)

K =
∂2gn

∂qαβ∂Qαγ

∣∣∣∣
RS

= (βJ)2(βK)2(Qq − w), (A.24)

L =
∂2gn

∂qαβ∂Qγδ

∣∣∣∣
RS

= (βJ)2(βK)2(Qq − v), (A.25)

M =
∂2gn

∂Qαβ∂Qαβ

∣∣∣∣
RS

= (βK)2
[
1 + (βK)2(Q− 1)Q

]
,

(A.26)

N =
∂2gn

∂Qαβ∂Qαγ

∣∣∣∣
RS

= (βK)4
(
Q2 −W

)
, (A.27)

O =
∂2gn

∂Qαβ∂Qγδ

∣∣∣∣
RS

= (βK)4
(
Q2 − S

)
. (A.28)

In the above equations, different replica labels are dis-
tinct from one another, whereas ..|RS means elements of
the Hessian matrix evaluated within the replica-symmetric
solution; the parameters p, q and Q are given by equa-
tions (14–16) and

S =
〈〈
ϕ4

2

〉〉
xy
, (A.29)

s =
〈〈
ϕ4

1

〉〉
xy
, (A.30)

v =
〈〈
ϕ2

1ϕ
2
2

〉〉
xy
, (A.31)

W =
〈〈
ϕ3

2

〉〉
xy
, (A.32)

w =
〈〈
ϕ2

1ϕ2

〉〉
xy
. (A.33)

The next step is to find the anomalous eigenvalues. These
correspond to breaking the symmetry of the vector u with
respect to one specific replica-index, denoted herein by θ,{

εα = a1 for α = θ
εα = a2 for α 6= θ

(A.34)

{
ηαβ = b1 for α or β = θ
ηαβ = b2 for α, β 6= θ

(A.35)

{
ξαβ = c1 for α or β = θ
ξαβ = c2 for α, β 6= θ.

(A.36)
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Orthogonality with the replica-symmetric eigenvector
implies

a2 = − a1

n− 1
, b2 = − b1

n− 2
, c2 = − c1

n− 2
· (A.37)

Thus, the anomalous eigenvalues follow from

λ(A)a1 = (A− B)a1 + (n− 1)(C − D)b1
+(n− 1)(E − F)c1, (A.38)

λ(A)b1 =
n− 2
n− 1

(C − D)a1 + [G + nH− (n− 3)I]b1

+[J + nK− (n− 3)L]c1 = 0, (A.39)

λ(A)c1 =
n− 2
n− 1

(E − F)a1 + [J + nK− (n− 3)L]b1

+[M+ nN − (n− 3)O]c1 = 0. (A.40)

In the limit n→ 0 the longitudinal and anomalous eigen-
values coincide and may be obtained from equation (21).

Finally, we must find the transverse eigenvalues. In
this case, two replica indices are fixed and the symmetry
between replicas is broken with respect to such indices
(herein denoted by θ and ν). One has,{

εα = a3 for α = θ or ν
εα = a4 for α 6= θ, ν

(A.41)

ηαβ = b3 for α or β = θ or ν
ηθα = ηνα = b4 for α 6= θ, ν
ηαβ = b5 for α, β 6= θ, ν

(A.42)

 ξαβ = c3 for α orβ = θ or ν
ξθα = ξνα = c4 for α 6= θ, ν
ξαβ = c5 for α, β 6= θ, ν.

(A.43)

These eigenvectors must be orthogonal to both longitudi-
nal and anomalous ones. Thus, it follows that a3 = a4 = 0
and

b3 = −(n− 2)b4 =
1
2

(n− 2)(n− 3)b5,

c3 = −(n− 2)c4 =
1
2

(n− 2)(n− 3)c5. (A.44)

From these observations, the transverse eigenvalues are
given by the secular equations

λ(T)b3 = (G − 2H+ I)b3 + (J − 2K+ L)c3, (A.45)

λ(T)c3 = (J − 2K+ L)b3 + (M− 2N +O)c3, (A.46)

which are independent of n.
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